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Abstract

BACKGROUND—Several risk factors have been consistently associated with neural tube defects 

(NTDs). However, the predictive ability of these risk factors in combination has not been 

evaluated.

METHODS—To assess the predictive ability of established risk factors for NTDs, we built 

predictive models using data from the National Birth Defects Prevention Study, which is a large, 

population-based study of nonsyndromic birth defects. Cases with spina bifida or anencephaly, or 

both (n = 1239), and controls (n = 8494) were randomly divided into separate training (75% of 

cases and controls) and validation (remaining 25%) samples. Multivariable logistic regression 

models were constructed with the training samples. The predictive ability of these models was 

evaluated in the validation samples by assessing the area under the receiver operator characteristic 

curves. An ordinal predictive risk index was also constructed and evaluated. In addition, the ability 

of classification and regression tree (CART) analysis to identify subgroups of women at increased 

risk for NTDs in offspring was evaluated.

RESULTS—The predictive ability of the multivariable models was poor (area under the receiver 

operating curve: 0.55 for spina bifida only, 0.59 for anencephaly only, and 0.56 for anencephaly 

and spina bifida combined). The predictive abilities of the ordinal risk indexes and CART models 

were also low.

CONCLUSION—Current established risk factors for NTDs are insufficient for population-level 

prediction of a women’s risk for having affected offspring. Identification of genetic risk factors 

and novel nongenetic risk factors will be critical to establishing models, with good predictive 

ability, for NTDs.

*Correspondence to: Laura E. Mitchell, University of Texas School of Public Health, 1200 Herman Pressler Dr., Houston, TX 77030. 

The findings and conclusions in this report are those of the authors and do not necessarily reflect those of the Centers for Disease 
Control and Prevention.

HHS Public Access
Author manuscript
Birth Defects Res A Clin Mol Teratol. Author manuscript; available in PMC 2015 September 
14.

Published in final edited form as:
Birth Defects Res A Clin Mol Teratol. 2012 March ; 94(3): 141–146. doi:10.1002/bdra.22883.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

spina bifida; neural tube; anencephaly; congenital abnormalities; prediction; risk score

INTRODUCTION

Spina bifida and anencephaly are severe neural tube defects (NTDs) that result from 

abnormalities in the development of the spinal cord and brain, respectively. These 

conditions are among the more common birth defects, with an estimated 6 in 10,000 live 

births in the United States affected by spina bifida or anencephaly (Parker et al., 2010). The 

exact pathogenesis of these conditions is unknown. However, several risk factors for spina 

bifida and anencephaly have been consistently identified, including: family history 

(reviewed in Mitchell, 2005; Lupo et al., 2010a), female sex (Seller, 1987; Shaw et al., 

2003), as well as maternal folate status and folic acid intake (Bailey et al., 2003; Toriello, 

2011), Hispanic ethnicity (Canfield et al., 2006; Feuchtbaum et al., 1999), obesity (Waller et 

al., 1994; Shaw et al., 1996), pregestational and gestational diabetes (Becerra et al., 1990; 

Correa et al., 2008; Canfield et al., 2009; Lupo et al., 2010a), anticonvulsant use (Lammer et 

al., 1987; Rosa, 1991), and hyperthermia (Milunsky et al., 1992; Shaw et al., 1998; Duong et 

al., 2011). While these associations are established or strongly suspected, the predictive 

ability of these risk factors has not been evaluated in combination.

Because spina bifida and anencephaly share some epidemiologic characteristics, result from 

similar embryological processes (i.e., failure of the neural tube to close properly), and co-

aggregate within families, many studies of NTDs have combined the two component 

phenotypes (i.e., spina bifida, anencephaly) into a single, composite case definition 

(composite NTDs; Mitchell, 2005). However, based on previous evidence that NTDs share 

some but not all risk factors (Feuchtbaum et al., 1999; Rowland et al., 2006; Waller et al., 

2007; Correa et al., 2008; Rasmussen et al., 2008; Lupo et al., 2010b), it is prudent to 

evaluate risk using both the component and composite NTD case definitions.

Whereas studies that focus on assessing associations between individual exposures and birth 

defects provide insights into etiology, studies that assess predictive ability of risk factors can 

help to identify high-risk groups in the population (e.g., to target specific intervention 

strategies to a particular subgroup). Predictive modeling has been used in epidemiologic 

studies of other conditions (e.g., cardiovascular disease, stroke, cancer; D’Agostino et al., 

1994, 2008; Trepanier et al., 2004; Spitz et al., 2007), but it has not been used widely for the 

purpose of predicting risk to women for birth defects in offspring. Therefore, in the present 

study we evaluated the ability of various combinations of established or strongly suspected 

risk factors for NTDs to discriminate between women with offspring with spina bifida or 

anencephaly and controls in the National Birth Defects Prevention Study, assessing both 

component and composite NTD case definitions.
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MATERIALS AND METHODS

Study Subjects

The present study is based on data from the National Birth Defects Prevention Study 

(NBDPS), an ongoing, population-based case-control study of birth defects, including 

NTDs. NBDPS data were collected from 10 birth defects surveillance systems: Arkansas 

(AR), California (CA), Georgia (GA), Iowa (IA), Massachusetts (MA), New Jersey (NJ), 

New York (NY), North Carolina (NC), Texas (TX), and Utah (UT). Approval from the 

institutional review board for each study site was obtained.

Details of the methods for NBDPS subject recruitment and data collection have been 

published elsewhere (Yoon et al., 2001). Cases were ascertained through population-based 

birth defects surveillance systems. Cases included live births (all sites), fetal deaths ≥20 

weeks (AR, CA, GA, IA, NC, NY, MA, TX, and UT only), and elective pregnancy 

terminations (AR, CA, GA, IA, NC, NY, TX, and UT only). Medical records for case 

infants were abstracted, and NBDPS clinical geneticists reviewed these data to confirm 

diagnoses of eligible defects (Rasmussen et al., 2003). Cases with single-gene disorders or 

chromosome abnormalities (i.e., syndromic cases) were excluded. Controls were randomly 

selected from live born infants without major birth defects delivered to women in the study 

regions. Controls were identified through birth certificate data or hospital birth logs. 

Participating mothers of cases (live births, fetal deaths, and elective pregnancy terminations) 

and controls completed a computer-assisted telephone interview in which they were asked 

about exposures before and during their pregnancy, pregnancy and family histories, maternal 

conditions, and lifestyle and behavioral factors.

We included data for NBDPS cases with spina bifida or anencephaly and controls with 

estimated dates of delivery between October 1, 1997, and December 31, 2007, in our 

analyses. To limit heterogeneity within the case groups, we only included cases with isolated 

spina bifida or anencephaly. NBDPS clinical geneticists classified cases as having isolated 

spina bifida or anencephaly if no additional malformations were present, or if only 

malformations that were likely to be secondary to spina bifida or anencephaly (e.g., talipes 

equinovarus, hip dislocation, hydrocephalus) were present (Rasmussen et al., 2003).

Predictor Variables

Only variables that are established or strongly suspected risk factors for NTDs were 

considered in this analysis (reviewed in Lupo et al., 2010a). To maximize the chance to 

build models with good predictive ability, we considered a broad list of risk factors, some of 

which are stronger or more established risk factors than others. Potential predictor variables 

were obtained from the interview data; these included the following dichotomous (yes or no) 

variables: maternal Hispanic ethnicity, obesity before pregnancy (body mass index ≥30.0), 

lack of any folic acid supplementation (folic acid, multivitamin, or prenatal supplement), 

low dietary folate intake (defined in the next paragraph), anticonvulsant medication use, 

type I or II diabetes diagnosed before index pregnancy, gestational diabetes during index 

pregnancy, any hot tub or sauna use, and family history of NTDs in a first or second-degree 
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relative of the case. In addition, infant sex was included to assess differences in risk between 

mothers of males and females.

Folic acid supplementation, anticonvulsant use, and hot tub or sauna use were defined based 

on use during the month before pregnancy and the first month of pregnancy (B1–P1). 

Dietary folate intake during the year before pregnancy was assessed based on interview 

questions from a shortened version of the Willett food frequency questionnaire (Willett and 

Lenart, 1998). Total dietary folate intake was expressed as dietary folate equivalents, which 

account for the increased bioavailability of folate from foods fortified with folic acid 

(Institute of Medicine, 1999). Low dietary folate intake was defined by a dietary folate 

equivalent value in the lowest quartile, based on the distribution of dietary folate equivalent 

among controls (i.e., ≤333.6 μg).

In post hoc analyses, alternative, categorical definitions of race or ethnicity (non-Hispanic 

White, non-Hispanic Black, Hispanic, other), body mass index (<18.5 kg/m2, 18.5–24.9 

kg/m2, 25.0–29.9 kg/m2, ≥30 kg/m2), and dietary folate intake (based on all four quartiles 

defined by dietary folate equivalents among controls; i.e., ≤333.6 μg, 333.7–495.9 μg, 

496.0–720.5 μg, >720.5 μg) were also considered. All analyses were also repeated using 

data only from the NBDPS surveillance sites that ascertain elective pregnancy terminations 

(AR, CA, GA, IA, and TX only).

Statistical Methods

Frequency distributions of maternal demographic and behavioral factors were tabulated for 

case and control infants. Predictive statistical models were built and evaluated separately 

considering three case definitions: a composite NTD definition, including cases with 

anencephaly or spina bifida, and two component case definitions, one including only cases 

with spina bifida and one including only cases with anencephaly. For each of these case 

definitions, cases and controls were randomly divided into separate training (constituting 

75% of cases and controls) and validation (constituting the remaining 25% of cases and 

controls) samples. (These proportions are based on methods described in previous studies 

[Barlow et al., 2006; Spitz et al., 2007].) Some cases may have been represented in the 

composite NTD training sample and the component validation sample or vice versa. The 

training samples were used to guide model development, and the validation samples were 

used to evaluate the predictive ability of the models. All analyses were conducted using SAS 

(version 9.2; SAS, Inc., Cary, NC), unless noted otherwise.

Multivariable Models

Initially, multivariable models included main effects terms for all of the potential predictor 

variables, and a manual backwards stepwise selection procedure was used to select final 

models. Variables with nonsignificant p values (i.e., p _0.05) were consecutively removed 

by descending p value until only variables with significant p values (i.e. p < 0.05) remained 

in the final models. The final models were then evaluated in the validation samples. 

Hosmer-Lemeshow goodness-of-fit tests were conducted for each model to assess model fit 

in the validation sample. This test assesses model calibration by evaluating the 

correspondence between observed and predicted probability rates for groups of cases 
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(Royston et al., 2009; Farooq et al., 2011). In addition, receiver operating characteristic 

(ROC) curves were constructed by plotting the sensitivity and specificity of each model in 

the validation sample. To determine each model’s ability to discriminate between cases and 

controls, the area under the curve (AUC) statistic and 95% confidence intervals were 

calculated for each ROC curve. An AUC statistic of 0.5 indicates chance prediction (e.g., 

comparable to a coin toss), and a value of 0.7 or higher indicates good predictive ability 

(Bewick et al., 2004).

Ordinal Risk Index

To assess predictive ability of a simple index with potential clinical utility, we generated an 

ordinal risk index. This index was based only on variables that were included in the 

phenotype-specific regression models and was determined for each case and control mother 

by increasing a score of zero by one unit for each risk factor present for that mother. For 

example, the offspring of an obese, Hispanic mother with a family history of NTDs and no 

other risk factors would have a risk score of 3. The predictive ability of a univariate logistic 

regression model that included this ordinal risk index variable was assessed in the validation 

samples by evaluating Hosmer-Lemeshow goodness-of-fit tests and AUC statistics.

Classification and Regression Tree Analysis

To identify subgroups of women at increased risk for having offspring with an NTD, 

classification and regression tree (CART) analysis (Breiman, 1984) was used. CART is a 

nonparametric statistical procedure that can identify mutually exclusive population 

subgroups with common characteristics that are associated with the likelihood of an 

outcome (Lemon et al., 2003). This process is accomplished by partitioning data into 

maximally homogeneous subgroups to generate decision tree classification algorithms 

(Breiman, 1984). Unlike typical regression-based predictive modeling approaches, which 

are often used to estimate the average effect of independent variables on a dependent 

variable over the entire population, CART analysis can examine differing effects within 

population subgroups (Katz, 2006). Thus, CART is well-suited to evaluate and interpret 

complex interactions involving several variables (Lemon et al., 2003).

CART analyses were conducted using data from the complete datasets (i.e., training and 

validation sets combined). CART models were created using the Salford Predictive Model 

Builder program (version 6.6, Salford Systems, San Diego, CA), using the Gini impurity 

function to define decision trees. All the potential predictor variables were evaluated for 

possible inclusion in the CART models. A 10-fold cross validation was used to obtain 

reliable estimates of classification accuracy (Zhang, 1998) and maximal tree depth was set 

to four levels. The predictive ability of the CART models was assessed by evaluating AUC 

statistics, which were generated by the Salford Predictive Model Builder program.

RESULTS

For the period October 1, 1997, through December 31, 2007, the NBDPS included 1239 

cases with isolated spina bifida or anencephaly (spina bifida, n=836, 67.5%; anencephaly, 
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n=403, 32.5%) and 8494 controls. The distribution of NTD risk factors by case status and 

NTD phenotypes are presented in Table 1.

The final multivariable predictive logistic regression model for the composite phenotype 

included: family history of NTDs, maternal Hispanic ethnicity, obesity, anticonvulsant use, 

and lower dietary folate intake (Table 2). The final model for spina bifida also included 

these variables. Predictors for anencephaly were female infant sex, family history of NTDs, 

and maternal Hispanic ethnicity and lower dietary folate intake. For the three factors 

predictive of both component phenotypes (i.e., family history of NTDs, maternal Hispanic 

ethnicity, and lower dietary folate intake), the magnitude of associations were stronger for 

anencephaly than for spina bifida.

Validation statistics for the final multivariable models are summarized in Table 3. 

Nonsignificant Hosmer-Lemeshow goodness-of-fit tests indicated that all three of these 

multivariable models were well calibrated throughout the entire range of probabilities, 

suggesting that the models fit the data well. The multivariable model AUC scores for 

composite NTDs, spina bifida, and anencephaly were 0.56, 0.55, and 0.59, respectively. The 

AUC scores did not increase when categorical variables (rather than dichotomous variables) 

for maternal race or ethnicity, obesity, or dietary folate intake were considered in these 

multivariable models (data not shown).

The mean values of the ordinal risk index score for cases with composite NTDs, spina 

bifida, and anencephaly were similar: 0.87 (SD, 0.79), 0.87 (SD, 0.80), and 0.89 (SD, 0.77), 

respectively. The mean value for controls was lower, 0.63 (SD, 0.69; data not shown). 

Results from the three univariable logistic regression models with the ordinal risk index 

variable are presented in Table 2. Effect sizes for the association between the ordinal risk 

index score and each outcome were similar between these models, with the strongest effect 

size present for anencephaly (odds ratio, 1.62; 95% confidence interval, 1.41–1.85). For 

these models, Hosmer-Lemeshow goodness-of-fit tests indicated that the models fit the data 

well (i.e., model calibration was not poor). However, AUC scores were 0.56, 0.55, and 0.57 

for composite NTDs, spina bifida, and anencephaly, respectively (Table 3), indicating that 

the models provided poor discrimination between case and control mothers.

CART analyses were also conducted separately for each of the three case groups, and a 

decision tree was generated for each case group (data not shown). For composite NTDs and 

spina bifida, the variables represented in these decision trees were similar to those in the 

corresponding final multivariable logistic regression model. However, lower dietary folate 

intake was not present in either decision tree, and anticonvulsant use was not present in the 

tree for composite NTDs. The decision tree for anencephaly included only NTD family 

history and maternal Hispanic ethnicity. The AUC scores for the decision trees for 

composite NTDs, spina bifida, and anencephaly, respectively, were 0.58, 0.58, and 0.57 

(data not shown). All analyses were also repeated using data only from the NBDPS 

surveillance sites that ascertain elective pregnancy terminations, and the predictive ability of 

these models were similar to those in the main analytic group.
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DISCUSSION

Based on our analyses of these NBDPS data, it appears that the known and strongly 

suspected risk factors for NTDs poorly discriminate between mothers of cases and controls, 

as indicated by AUC scores less than 0.6. An AUC value of 0.5 corresponds to chance 

prediction, comparable to a coin toss, whereas a value of 0.7 or higher indicates good 

predictive ability (Bewick et al., 2004).

Knowledge of NTD risk factors can be helpful for individual risk counseling. For example, 

an individual with a history of a previous NTD-affected pregnancy would have a 

substantially increased risk for NTDs in future pregnancies. However, in the present 

analyses, we demonstrate that known NTD risk factors are not sufficient for population-

based screening to identify women at high-risk for spina bifida or anencephaly in offspring. 

This finding may be due in part to the rarity of strong NTD risk factors (e.g., NTD family 

history, anticonvulsant use) and the fact that the more common risk factors (e.g., infant sex) 

tend to be weakly associated with risk. Given the rarity of NTDs, the likelihood of 

developing models with good predictive ability may be low in the absence of relatively 

common risk factors with strong effects. Regardless, current recommendations (e.g., 

changing epilepsy therapy from high-risk to low-risk drugs) are warranted, although the 

effects on population risk will likely be negligible.

The protective effects of folic acid supplementation or higher dietary folate intake, or both, 

have not been as obvious in recent studies as those seen before mandatory fortification of 

food products with folic acid in the United States in 1998 (e.g., fortification may mask the 

effects of supplementation; Mosley et al., 2009; Ahrens et al., 2011). Thus, the predictive 

ability of the lack of folic acid supplementation and low dietary folate intake variables in the 

present study may have been lower than it would have been among cases born exclusively 

before 1998.

The low predictive ability of known and suspected NTD risk factors suggests that 

postfortification factors responsible for the majority of NTD risk remain unidentified. 

Therefore, these results highlight the importance of pursuing research strategies to identify 

genetic risk factors as well as novel nongenetic risk factors for NTDs. However, to improve 

population predictive models, novel factors may need to be relatively common and have 

relatively strong effects, and it is possible that such factors do not exist.

There are a few limitations of our analyses. The response rate for the study was 65.8% 

among controls and 67.6% among cases with spina bifida or anencephaly (data not shown). 

Because data on nonresponders were not available, we could not assess the possibility of 

bias related to response rate. Recall bias is a common concern in retrospective studies; 

however, it is unlikely that recall bias could explain the observed poor predictive ability of 

the models, because overreporting of exposures in cases compared with controls would be 

expected to increase the strength of associations, which would increase the predictive ability 

of the models. Despite the large overall sample size, the sample size for cases with 

anencephaly was relatively small, and this may have limited our ability to develop and 

evaluate models within this subgroup. It is also possible that an expanded list of potential 
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predictors, including genetic factors, would have enhanced the predictive ability of models. 

However, major genes involved in NTD risk have not yet been established (Lupo et al., 

2010a).

This study also has several strengths. The NBDPS is one of the largest studies of NTDs, 

with data from diverse populations across the United States ascertained from population-

based surveillance systems. Detailed clinical information was abstracted from medical 

records and reviewed by clinical geneticists, to ensure accurate diagnoses and exclude cases 

with known single gene disorders and chromosome abnormalities. To limit potential 

etiologic heterogeneity within case definitions, cases with multiple birth defects were also 

excluded and case definitions were considered that evaluated cases with spina bifida and 

anencephaly separately and together.

Comprehensive predictive models and risk scores have been developed and used for a 

variety of other chronic conditions (e.g. cardiovascular disease, stroke, several types of 

cancer, and many other common conditions; D’Agostino et al., 1994, 2008; Trepanier et al., 

2004; Spitz et al., 2007), but the use of predictive risk models based on established risk 

factors have not been widely used for the purpose of predicting risk for NTDs or other birth 

defects. These results serve as a first step towards developing comprehensive predictive 

models for NTDs with good predictive ability. Our findings indicate that research focusing 

on identifying novel genetic and nongenetic risk factors for spina bifida and anencephaly is 

needed. The availability of prediction models with good predictive ability could lead to 

future birth defects prevention, by providing screening tools for individuals at high-risk for 

NTDs in offspring, as well as by guiding development of intervention strategies specific to 

high-risk subgroups of women with single or multiple risk factors.
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